

Council of Scientific and Industrial Research (CSIR) Latest Innovation and Technological Development – November 2025

Title of Technology/ Innovation	Brief Description about the technology/ Innovation	If patented (Yes/ No) with patent number	Technology Readiness Level (1-9)	Benefits	Potential Applications	Picture videos, if any showcasing the technology (weblink)
Fermentation	Provided	Under	Level 6	Provided	Provided	Provided
based	below	process		below	below	below
Technology			Justification:			
Development			The			
for			biodegradation			
Biodegradation			process has			
of Ammonium			been			
Perchlorate			successfully demonstrated at			
			pilot scale			
			(500L			
			fermenter)			
			under relevant			
			operational			
			conditions,			
			confirming its			
			effectiveness,			
			scalability, and			
			readiness for			
			industrial			
			implementation			
			trials.			

Brief Description about the Technology:

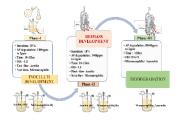
The project, jointly carried out by CSIR-Institute of Microbial Technology (CSIR-IMTECH) and ISRO-Vikram Sarabhai Space Centre (VSSC), focused on developing a sustainable and eco-friendly biotechnological process for the biodegradation of Ammonium Perchlorate (AP), a major oxidizer used in solid rocket propellants. From the developed microbial consortium, a pure single isolate was identified as the most efficient strain capable of rapidly degrading high concentrations of AP. The process was systematically optimized for media composition, nutrient feed, and operational parameters, and successfully scaled up from 5L to 500L fermenter levels, achieving degradation of 10,000 ppm AP to below 2 ppm within 24 hours under controlled fed-batch conditions. This innovative microbial-based technology offers a green, cost-effective, and scalable solution for the safe and efficient treatment of AP-containing effluents generated in aerospace.

Benefits:

- 1. Eco-friendly and Sustainable: Utilizes natural microbial processes instead of harsh chemical or thermal treatments, reducing environmental pollution and promoting green waste management.
- 2. Highly Efficient: Capable of degrading high concentrations of ammonium perchlorate (10,000 ppm) to safe levels (<2 ppm) within 24 hours, ensuring rapid detoxification.
- 3. Cost-effective: Minimizes operational costs by using biological degradation
- **4. Scalable Process:** Successfully demonstrated from laboratory (5L) to pilot-scale (500L) fermenters, proving industrial applicability and robustness.
- 5. Safe for the Environment: Converts perchlorate compounds into harmless end products, reducing health and ecological risks.
- **6.** Supports Strategic Sectors: Offers a sustainable solution for waste management in aerospace particularly for ISRO and related establishments handling solid rocket propellants.

Potential Applications:

- 1. Aerospace and Defense Industries: Treatment of waste streams containing perchlorate generated during the production, testing, and disposal of solid rocket propellants.
- 2. Environmental Remediation: Bioremediation of soil and groundwater affected by perchlorate compounds.
- 3. Industrial Effluent Treatment: Integration into effluent treatment plants (ETPs) of chemical, explosive, and pyrotechnic industries where perchlorate is used or produced.
- **4. Research and Development:** Further application in developing microbial systems for biodegradation of other hazardous oxidizers and explosives.
- 5. Sustainable Waste Management: Adoption as a model green technology for large-scale biological treatment of industrial wastes, supporting national environmental and safety goals.


Pictures:

A. Isolated culture 'O1' with highest AP degradation efficiency

B. Degradation of AP at lab scale

C. Process development

D. Scale-up in 5 L fermenter

E. Scale-up in 50 L fermenter F. Scale-up in 500 L fermenter

G. Successful completion of project at CSIR-IMTECH and meeting at ISRO, VSSC

IIT-Roorkee

Latest Innovation and Technological Development – November 2025

SI. No.	Title of Technology/Innovation	Brief Description about the technology/Innovation (including details about the innovator/developer)	If patented (Yes/No) with patent number	Tech nolog y Read iness Level (1-9)	Benefits	Potential Applications	Pictures/Vid eos, if any showcasing the Technology (Weblink)
1.	A perovskite based alpha particle detector for monitoring radon progeny and a portable system employing the same	The invention discloses a novel portable system for monitoring of air borne Radon Progeny in confined environment which is based on Perovskite Alpha Particle Detector. The Aluminium Alloy casing of this system contains a novel integration of Perovskite detector, Diaphragm pump based Air ingress HEPA filtration system, 2048 MCA and microcontroller based data acquisition system. This system is powered by Lithium ion rechargeable batteries. Detector comprising of CsPbBr3 perovskite film of thickness 90 nanometres – 100 micrometres is deposited on GaAs semiconductor and Silicon substrate. This also has provision of Wi-fi which allows data transmission and remote monitoring of Radon progeny.	Yes Application no.: 202511082940	3	This system has a provision of Wi-fi which allows data transmission and facilitates the remote monitoring of air borne Radon progeny in confined environment. This system is portable, easy to operate, user friendly, easily to establish, low maintenance and economical. The solution is highly environment friendly as it deploys rechargeable lithium ion batteries for powering up the system, and also the detector consists of environment friendly perovskite films. This solution brings down	This solution can be deployed for civil as well as military installations where there is need to monitor radon progeny concentrations such as Uranium mines, underground facilities etc. The present invention deploys novel Perovskite semiconductor based Alpha particle detector which has outstanding charge transport properties, high stability and good attenuation efficiency making it commercially viable next generation semiconductor based detector. This system also has a provision of Wi-fi which allows data transmission and facilitates the remote monitoring of air borne	https://drive. google.com/ drive/folders /1xORSFmL xBjENG Iu Ml67 X3vO 8b3RMB6?u sp=sharing

					Ι.		1
		Inventors: Rakesh Kumar, Anil			the overall carbon	Radon progeny in	
		Kumar Gourishetty and Mohak			footprints.	confined environment.	
		Ketan Patil				• This system is portable,	
						easy to operate, user	
						friendly, easily to	
						establish, low	
						maintenance and	
						economical.	
						• The solution is highly	
						environment friendly as it	
						deploys rechargeable	
						lithium ion batteries for	
						powering up the system,	
						and also the detector	
						consists of environment	
						friendly perovskite films.	
						This solution brings down	
						the overall carbon	
						footprints.	
2.	Wearable cooling	The present disclosure discloses a	Yes	3	The present invention	The present invention	https://drive.
۷.	system	wearable cooling system. The system	1 08	3	provides a system	relates a system for	google.com/
	system	includes integration of	Application n	no.:	capable of continuous,	providing continuous	drive/folders
		thermoelectric cooling modules with		10	long duration cooling	cooling to a user of a	/1gi 2W2PN
		a wearable accessory, where the	202311000179		by using an active,	vehicle via a portable,	A5qRi9NBz
		thermoelectric cooling modules			closed-loop liquid	wearable accessory.	XsABcwiaK
		include a heat absorption end and a			cooling circuit,	wearable accessory.	GS4kZM?us
		heat dissipation end. Liquid coolant			overcoming the		p=sharing
		blocks are thermally coupled to the			limitations of systems		p-snaring
		heat dissipation end. A liquid			with finite heat sinks.		
					with finite heat sinks.		
		circulation pump is fluidly coupled to			It marridge a high-l-		
		the liquid coolant blocks and a heat			It provides a highly		
		exchanger to form a closed-loop			energy-efficient		
		circuit. The system is adapted to			solution by primarily		
		receive thermal energy, via the heat			using motion-generated		
		absorption end and enable, transfer			ambient airflow for		
		of the absorbed thermal energy. The			heat dissipation.		
		system heats the liquid coolant and					

		circulates the heated liquid coolant through the closed-loop liquid circuit to the heat exchanger. The system enables return of the liquid coolant, after being cooled, to the liquid blocks for continuous thermal energy absorption. Inventors: Ankit Bansal, Ayush Pradip, Jain Arul Amit, Pranav pardeshi and Anubhav Maity			It offers a dual-mode operation that ensures cooling effectiveness both when the user moving and when stationary, enhancing its practical usability. It offers a fully self-contained, portable, and battery powered system that does not depend on a vehicle's engine for power.		
					It also provides smart control features through microcontroller and wireless connectivity, allowing for real-time user adjustment of the cooling level.		
3.	System and method for real-time vehicle occupancy monitoring and alert generation	Disclosed is a system for monitoring vehicle occupancy in real-time. The system includes at least one imaging unit disposed over at least one door of a vehicle for capturing real-time images or videos. A location tracking unit obtains real-time location and corresponding time. An edge device with a processing unit receives the real time images or videos, the real-time location data and the time, and processes the images or videos, determines passenger entry/exit	Yes Application no.: 202521075676	4	The technology ensures accurate, real-time passenger counting and alert generation, improving fleet management and passenger safety. It reduces bandwidth needs through edge processing, detects tampering for system integrity, and supports dynamic vehicle scheduling based on occupancy trends.	The system integrates imaging units over vehicle doors with a location tracking unit and an edge device to capture and process real-time images, location, and speed data. It determines passenger entry and exit events to calculate real-time occupancy, while the central processing apparatus analyzes this data to identify occupancy patterns and generate	https://drive. google.com/d rive/folders/1 SJ0- cMfP113kR5 W4Pwanlhw oyeJJwG6s?u sp=sharing

		events, and calculates real-time occupancy count. An information processing apparatus with processing circuitry receives the occupancy count and location data, generates alerts based on vehicle conditions and occupancy levels, and identifies occupancy patterns. The system further includes a local database at a vehicle depot for storing data, and an interface for notifying the vehicle managing authority about alerts. Inventors: Amit Agarwal, Karthik Krishnan O and Ritesh Singh		Overall, it enhances operational efficiency, minimizes downtime, and enables data-driven decision-making in public transport management.	alerts for breakdowns, off- route movement, idling, or overcrowding. A local database at the vehicle depot enables automatic transfer and storage of video files for monitoring and analysis.	
4.	A transition structure from a microstrip line to an empty substrate integrated waveguide (ESIW)	The present disclosure provides a transition structure from a microstrip line to an empty substrate integrated waveguide (ESIW) that incorporates a metallized stepped dielectric profile protruding into the ESIW. This profile may be designed and manufactured with relative ease, and may be suitable for use with thinner substrates. The transition structure may function as a DC short, potentially making it applicable for various devices such as mixers, frequency multipliers, and detectors. The structure may be adaptable, allowing for redesign to operate over different frequency bands as needed. Unlike some prior designs, this structure may not require additional vias on both sides of the dielectric	 4	The transition structure provides wide fractional bandwidth exceeding 70%, low insertion and return loss, and simplified fabrication without additional vias. Its metallized stepped dielectric profile ensures efficient impedance matching, reduced dielectric losses, and structural reliability. The design enhances signal integrity, enables miniaturization, and improves overall performance in	microstrip circuits and low-loss ESIW structures. It is suitable for integration in RF and communication systems, including telecommunications, aerospace radar, and consumer electronics,	https://drive. google.com/d rive/folders/1 EnZXiyQny W6Rz0iQVic pruxMlyygW 4XL?usp=sha ring

		profile. These features may			microwave and	performance, and	
		contribute to improved performance			millimeter-wave	wideband signal routing is	
		and flexibility in high-frequency			applications.	required.	
		applications, while potentially				1	
		simplifying the manufacturing					
		process.					
		process.					
		D'1' D' C' 1 1					
		Inventors: Rishi Raj Singh and					
		Akhilesh Mohan					
5.	A system and a method	The present disclosure provides a	Yes	4	The system ensures	The system for managing	https://drive.
	for managing power	system for managing power			optimum utilization of	power distribution is	google.com/d
	distribution	distribution in a geographic region.	Application no.:		available power,	applied in remote and	rive/folders/1
		The system comprises a power	202511081270		provides autonomous	hilly regions using	Ep2VZwb96
		generation unit implemented in the			operation without	renewable hydropower	cAxaKNdzA
		geographic region, a power			manual intervention,	generation units. It	D55B Kk22
		monitoring unit communicatively			and adapts to seasonal	enables temperature-	MjmmV?usp
		coupled to the power generation unit			variations. It supports	responsive and priority-	=sharing
		and configured to measure power			complete offline	based power allocation to	
		generated by the power generation			operation, prevents	essential loads like cold	
		unit in real-time, at least one sensor			power wastage, and	storage and hot water	
		implemented at the geographic			promotes sustainable	systems, flexible loads	
		region and configured to measure			rural development	such as cottage industry	
		temperature at the geographic region,			through intelligent	units, and optional	
						domestic loads for	
		and a control unit communicatively			energy management.		
		coupled to the power monitoring unit					
		and the at least one sensor. The				electrification.	
		control unit is configured to ascertain					
		the power generated based on the					
		measurement by the power					
		monitoring unit, ascertain the					
		temperature based on the					
		measurement by the at least one					
		sensor, and distribute the power to at					
		least one load from a plurality of					
		loads based on at least one of the					
		power generated and the measured					

		temperature. The power generation unit comprises a water mill-based hydropower system, and the plurality of loads includes temperature-dependent loads such as cold storage systems and hot water systems. Inventors: Sunil Kumar Singal, Manish Mishra, Imtiyaz Ali, Sonal Keshawrao Thengane and Varun				
6.	A multi-pass helical submerged membrane distillation module for desalination wastewater treatment and method thereof	The present invention relates to a multi-pass helical submerged membrane distillation module for desalination and wastewater treatment. The module comprises a cylindrical brass shell incorporating inner and outer helical flow channels covered with hydrophobic membranes supported by spacers. The brass shell construction enhances thermal conductivity and minimises temperature polarisation, while the helical geometry increases residence time and promotes turbulence. The integrated spacer arrangement further reduces fouling and scaling, ensuring operational stability. A unique feature of the invention is its ability to function in direct contact and vacuum membrane distillation modes without requiring structural modifications. This dual-mode adaptability makes the system highly versatile for different operating environments. The compact and modular design	4	The brass helical shell enhances heat transfer and reduces temperature polarisation, while hydrophobic membranes with polypropylene spacers minimise fouling. The module achieves flux above 5 kg/m²h, rejection over 98%, low energy use, and long-term stable, modular, and leak-proof operation.	The multi-pass helical submerged Membrane Distillation (MD) module is used for desalination and wastewater treatment, operating in Direct Contact (DCMD) and Vacuum Membrane Distillation (VMD) modes without structural modification for saline, textile, and pharmaceutical wastewater.	https://drive. google.com/d rive/folders/1 5RVSdKQLs jh8QryDInp1 nofpk7at- b0w?usp=sha ring

facilitates	ease of assembly,		
scalability	, and integration with		
	e or waste heat sources. The		
invention	provides an energy-		
efficient	and robust solution for		
purifying	saline water, textile		
wastewat	er, pharmaceutical		
effluents,	and other contaminated		
streams.			
Inventor	s: <u>Anshul Yadav</u> , Bal		
Krishan,	Nikhil and Pawan Kumar		
Labhaset	var		